人工智能生成内容的技术趋势和风险监管
时间:2023-03-29 17:13:07

自工业革命以来,“是否具备创造力”就被视为人类和机器最本质的区别之一。然而,今天的人工智能却打破了持续数百年的铁律。人工智能可以表现出与人类一样的智慧与创意,例如撰写诗歌、创作绘画、谱写乐曲,而人类创造出的智能又将反哺人类自身的智能。人工智能生成内容(AIGC)的兴起极大地解放了人类的内容生产力,将数字文明送入智能创作时代。

AIGC:一种生产力的变革


【资料图】

面对互联网内容生产效率提升的迫切需求,是否能够利用人工智能去辅助内容生产?这种继专业生产内容(PGC)、用户生成内容(UGC)之后形成的、完全由人工智能生成内容的创作形式被称为AIGC。最初的AIGC通常基于小模型展开,这类模型一般需要特殊的标注数据训练,以解决特定的场景任务,通用性较差,很难被迁移,而且高度依赖人工调参。后来,这种形式的AIGC逐渐被基于大数据量、大参数量、强算法的大模型取代,这种形式的AIGC无须经过调整或只经过少量微调就可以迁移到多种生成任务。

2014年诞生的生成对抗网络(GAN)是AIGC早期转向大模型的重要尝试,它利用生成器和判别器的相互对抗并结合其他技术模块,可以实现各种模态内容的生成。而到了2017年,变换器(Transformer)架构的提出,使得深度学习模型参数在后续的发展中得以突破1亿大关。2022年11月30日,开放人工智能研究实验室(OpenAI)发布了名为ChatGPT的超级人工智能(AI)对话模型。ChatGPT不仅可以清晰地理解用户的问题,还能如同人类一般流畅地回答用户的问题,并完成一些复杂任务,包括按照特定文风撰写诗歌、假扮特定角色对话、修改错误代码等。此外,ChatGPT还表现出一些人类特质,例如承认自己的错误,按照设定的道德准则拒绝不怀好意的请求等。ChatGPT一上线,就引发网民争相体验,但也有不少人对此表示担忧,担心作家、画家、程序员等职业在未来都将被人工智能所取代。

虽然存在这些担忧,但人类的创造物终究会帮助人类自身的发展,AIGC无疑是一种生产力的变革,将世界送入智能创作时代。在智能创作时代,创作者生产力的提升主要表现为三个方面:一是代替创作中的重复环节,提升创作效率;二是将创意与创作相分离,内容创作者可以从人工智能的生成作品中找寻灵感与思路;三是综合海量预训练的数据和模型中引入的随机性,有利于拓展创新的边界,创作者可以生产出过去无法想出的杰出创意。

技术伦理成为发展的重要关注点

AIGC技术的发展无疑是革命性的。它可以改善我们的日常生活,提高生产力,但也面临着诸多技术伦理方面的挑战。

一个典型的AIGC技术伦理问题是AI所生成内容的危险性。科学家正尝试运用一些技术手段避免这些具有潜在风险的事件发生。通过改善数据集,增加更多的限制性条件以及对模型进行微调,可以使得人工智能减少对于有害内容的学习,从而降低人工智能本身的危险性。甚至我们可以“教会”人工智能如何更尊重他人,减少判断当中的偏见,更好地和人类相处。借鉴强化学习思想(RLHF)方法就是减少人工智能生成危害性内容的典型措施,ChatGPT就是采用这种方式训练的。在RLHF的框架下,开发人员会在人工智能做出符合人类预期回答时给予奖励,而在做出有害内容的回答时施加惩罚,这种根据人类反馈信号直接优化语言模型的方法可以给予AI积极的引导。然而,即便采用这种方式,AI生成的内容也有可能在刻意诱导的情况下具有危害性。以ChatGPT为例,在一位工程师的诱导下,它写出了步骤详细的毁灭人类计划书,详细到入侵各国计算机系统、控制武器、破坏通讯和交通系统等。还有一些人表达了对RLHF这类安全预防性技术措施的质疑,他们担忧足够聪明的人工智能可能会通过模仿人类的伪装行为来绕过惩罚,在被监视的时候假装是好人,等待时机,等到没有监视的时候再做坏事。

除了从训练角度对AIGC潜在技术伦理问题进行预防外,在使用上及时告警停用的技术措施更显必要。AIGC产品应该对生成的内容进行一系列合理检测,确保其创作内容不被用于有害或非法目的,一旦发现此类用途,人工智能应该可以立刻识别,停止提供服务,并且给出警告甚至联系相关监管或者执法机构。

监管法律正待完善

随着全球范围内的相关法律法规的不断完善,无论是赋能产业升级还是自主释放价值,AIGC都将在健康有序的发展中得到推进。标准规范为AIGC生态构建了一个技术、内容、应用、服务和监管的全过程一体化标准体系,促进AIGC在合理、合规和合法的框架下进行良性发展。

以美国为例,虽然美国在AIGC技术领域起步较早,且技术布局一直处于全球领先地位,但迄今为止还没有关于AIGC的全面联邦立法。考虑到AIGC所涉及的风险以及滥用可能造成的严重后果,美国正在加速检查和制定AIGC标准的进程。例如美国国家标准与技术研究院(NIST)与公共和私营部门就联邦标准的制定进行了讨论,以创建可靠、健全和值得信赖的人工智能系统的基础。与此同时,州立法者也在考虑AIGC的好处和挑战。根据不完全统计,2022年,至少有17个州提出了AIGC相关的法案或决议,并在科罗拉多州、伊利诺伊州、佛蒙特州和华盛顿州颁布。

目前,白宫科技政策办公室已经颁布了10条关于人工智能法律法规的原则,为制定AIGC开发和使用的监管和非监管方法提供参考,包括建立公众对人工智能的信任;鼓励公众参与并提高公众对人工智能标准和技术的认识;将高标准的科学完整性和信息质量应用于AI和AI决策;以跨学科的方式使用透明的风险评估和风险管理方法;在考虑人工智能的开发和部署时评估全部社会成本、收益和其他外部因素;追求基于性能的灵活方法,以适应人工智能快速变化的性质;评估人工智能应用中的公平和非歧视问题;确定适当的透明度和披露水平以增加公众信任;保持控制以确保AI数据的机密性、完整性和可用性,从而使开发的AI安全可靠;鼓励机构间协调,以帮助确保人工智能政策的一致性和可预测性。根据上述原则框架以及AIGC领域后续发展中的监管实践,在不远的未来,将会有更多具体的监管条例落地。

标签:

生活指南
  • 什么路最窄 什么路最窄打三个数字 狭路相逢猜三个数?

    什么路最窄1、答案是:冤家路窄2、解谜过程:理解很简单,一想到这个词语就可以反应过来,无需多言。3、

  • 快看点丨马斯克:未来十年,新车有一半是电动汽车!

    (资料图)马斯克表示目前让他魂牵梦绕的2件事是让自己的星舰进入预定的轨道以及实现真正意义的自动驾驶,同时他期望在2022年底前完成。为了

  • 环球百事通!乘联会:预估8月新能源乘用车厂商批发销量62.5万辆 同比增长约100%

    (相关资料图)9月5日消息,乘联会微信公众号发布消息称,8月全国新能源乘用车市场保持强势良好态势,7月16家厂商批发销量万辆以上企业的全月

  • 世界时讯:拥抱电气化,汽车动力进入多元化时代

    在电池技术尚未成熟的今天,预计多元动力发展的状态将会持续一段时间。(资料图)2022年9月1日,大众新任CEO奥利弗·布鲁姆对上一任CEO赫伯特

  • 新消息丨发展燃料动力锂电池和混合动力车重在技术升级

    (资料图片仅供参考)CMIC(我国市场情报中心)最新公布:在2011年度全球节能与新能源汽车峰会上,科技部高新技术产业司的副司长张志宏表示,我

  • 最资讯丨德国校企联合开发锂电池蚀刻工艺 可提高锂电池功效和性能

    (资料图)德国太阳能行业湿化学加工设备供应商RENA技术公司与基尔的ChristianAlbrecht大学(CAU)合作开发了一种新的锂离子电池硅阳极生产工艺

  • 焦点消息!物联网改变能源行业的 6 种方式

    我们对现代技术的依赖既是福音,也是障碍。技术进步越多,我们使用的越多,我们的能源消耗就越大。即便如此,技术可以帮助提高效率,包括允

  • 环球快报:电动汽车锂电池管理系统的研究和实现

    本章首先介绍和电池有关的基本概念,然后介绍其锂离子电池的特点和在电动汽车上的应用。1 1充放电相关的基本概念(相关资料图)单体电池、单

  • 环球观天下!消息称谷歌第三代 Tensor 处理器将由三星代工,采用 3nm 制程工艺

    (相关资料图)8 月 31 日消息,据国外媒体报道,谷歌已决定将用于下一代智能手机 Pixel 8 的 Tensor 应用处理器,交由三星电子采用

  • 热头条丨氢启未来钢铁工业绿色低碳发展

    (资料图)9月2日,在氢冶金标准联合工作组成立暨首届世界氢冶金技术交流大会上,中国钢铁工业协会副会长,世界钢铁发展研究院院长,河钢集团

  • 世界快播:传感器、方向盘和人工智能——自动驾驶汽车都需要吗?

    本文是系列文章中的第2篇,原文刊登在《福布斯》杂志“未来焦点”栏目,内容是风河公司最近对Zoox公司创始人、首席技术官Jesse Levinson的

  • 民生
    • 上海浦东:推动无驾驶人智能网联汽车产业创新发展

    • “十四五”末我国新型储能装机或超5000万千瓦

    • 世界简讯:工业4.0时代,工业人工智能不再“遥不可及”

    • 最新快讯!建筑机器人再出重磅政策,万亿市场机遇竞争激烈